# How to get the top frequency elements after grouping by columns?

by rosefun   Last Updated September 21, 2018 08:26 AM

I have a DataFrame named df, and I want to count the top frequency elements in column app_0, app_1 and app_2 on different sex.

import pandas as pd
import numpy as np
df=pd.DataFrame({'id':[1,2,3,4],'app_0':['a','b','c','d'],
'app_1':['b','c','d',np.nan],'app_2':['c','b','a','a'],'sex':[0,0,1,1]})

Input:

df
id app_0 app_1 app_2  sex
0   1     a     b     c    0
1   2     b     c     b    0
2   3     c     d     a    1
3   4     d   NaN     a    1

As you see, the sex of both id 1 and id 2 is 0. For sex 0, b appears the most in column app_0, app_1 and app_2, c appears the second most. So for id 1 and id 2, the most frequency element is b, and the second most is c.

Expected:

df
id app_0 app_1 app_2  sex  top_1  top_2
0   1     a     b     c    0      b      c
1   2     b     c     b    0      b      c
2   3     c     d     a    1      a      d
3   4     d   NaN     a    1      a      d
Tags :

Use:

def f(x):
s = x.stack().value_counts()
return pd.Series([s.index[0], s.index[1]], index=['top_1','top_2'])

Or:

from collections import Counter

def f(x):
c = Counter([y for x in x.values.tolist() for y in x])
a = c.most_common(2)
return pd.Series([a[0][0], a[1][0]], index=['top_1','top_2'])

df1 = df.groupby('sex')['app_0','app_1','app_2'].apply(f)

df = df.join(df1, on='sex')
print (df)
id app_0 app_1 app_2  sex top_1 top_2
0   1     a     b     c    0     b     c
1   2     b     c     b    0     b     c
2   3     c     d     a    1     a     d
3   4     d   NaN     a    1     a     d

EDIT:

More general solution working if values not exist:

df=pd.DataFrame({'id':[1,2,3,4],'app_0':['a','a','a','a'],
'app_1':['a','a','a',np.nan],'app_2':['a','a','a','a'],'sex':[0,0,1,1]})
print (df)
id app_0 app_1 app_2  sex
0   1     a     a     a    0
1   2     a     a     a    0
2   3     a     a     a    1
3   4     a   NaN     a    1

def f(x):
c = Counter([y for x in x.values.tolist() for y in x])
a = iter(c.most_common(2))

return pd.Series([next(a, ['no top1'])[0],
next(a, ['no top2'])[0]], index=['top_1','top_2'])

df1 = df.groupby('sex')['app_0','app_1','app_2'].apply(f)

df = df.join(df1, on='sex')
print (df)
id app_0 app_1 app_2  sex top_1    top_2
0   1     a     a     a    0     a  no top2
1   2     a     a     a    0     a  no top2
2   3     a     a     a    1     a      NaN
3   4     a   NaN     a    1     a      NaN
jezrael
September 21, 2018 08:12 AM