by Payam Abdy
Last Updated June 22, 2017 06:23 AM

I want to write an exponential function with base other than e, where the power is a complex equation. I can't write it as `b^f(x)`

, because `f(x)`

is a complex equation and it looks bad. I want to write it in a manner similar to when we use 'e' as a base (like `\exp(f(x))`

). I want to know can I write it as `\exp(b,f(x))`

?

I think what you mean is how to enhance how equations look when you use very large and complicated equation as a power to the base `e`

. A professional looking appearance for equations can be achieved with the following:

- Using
`\bigl`

,`\Bigl`

,`\biggl`

,`\Biggl`

,`\bigr`

,`\Bigr`

,`\biggr`

, or`\Biggr`

for brackets of any kind. Each command gives different size of the bracket and you may try them until you are satisfied - Using
`\left(`

and`\right)`

. Note that any bracket type works. If you don't want a left or right bracket, just type`\left.`

or`\right.`

- Using
`\displaystyle`

to increase the size of very small parts of an equation. Or`\scriptstyle`

to decrease the size of very large parts of the equation - Using
`\thinspace`

,`\medspace`

, or`\thickspace`

to increase spacing in crowded parts of the equation. Or`\negthinspace`

,`\negmedspace`

or`\negthickspace`

to reduce the distance between parts that are very far from each other.

Check how this works. Without the rules above:

The denominator looks unprofessional and ugly. It can be produced using:

```
\begin{equation}
I_{rs} = \frac{ I_{sc,ref}
\biggl[
1 + \frac{\alpha}{100} (T_{op}-T_{ref})
\biggl]
}
{e^{
( \frac{V_{oc,ref} [ 1 + \frac{\beta}{100} (T_{op}-T_{ref})]} {a V_{t}} )
} - 1
}
%
\label{eq:I_rs_trans}
\end{equation}
```

Now let's refine how the denominator looks:

Which is easier to read and professional-looking. Also, for much more complicated formula. Such presentation would reduce the likelihood of errors when reading the equations and using them.

```
\begin{equation}
I_{rs} = \frac{ I_{sc,ref}
\bigg[
1 + \frac{\alpha}{100} (T_{op}-T_{ref})
\biggl]
}
{e^{
\left( \displaystyle \frac{V_{oc,ref} \bigg[ 1 + \frac{\beta}{100} (T_{op}-T_{ref}) \biggl]} {a \thinspace V_{t}} \right)
} - 1
}
%
\label{eq:I_rs_trans}
\end{equation}
```

I hope this answers the question :)

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger