by Eva
Last Updated August 02, 2018 21:20 PM

The relation $\mathbf R$ defined on $\mathbb Z$ by $a\mathbf{R} b$ if and only if $\exists n, a=(2^n)b$

prove/disprove symmetry

prove/disprove transitive

prove/disprove reflexive

This was a question I had on my math test previously and it is driving me crazy. I was trying to use an induction proof but couldn't figure out what to put as my base case.

This is an order relation. It is transitive and reflexive, but asymmetric.

- Transitive since if $a=(2^n)b$ and $b=(2^m)c$ then $a=(2^{n+m})c$
- Reflexive since $a=2^0a$
- Assymetric since if $a=(2^n)b\wedge b=(2^m)a$ then $a=(2^{n+m})a$ so $n=m=0$ and therefore $a=b$

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger