by stats_model
Last Updated June 23, 2018 05:20 AM

I'm currently working through Lawrence Evan's PDE's textbook, and in it, he states the Rellich-Kondrachov theorem:

Assume $U$ is a bounded open set of $\mathbb R^n$, and $\partial U$ is $C^1$. Suppose $1 \leq p < n$. Then $$W^{1,p}(U) \subset \subset L^p(U)$$ for each $1 \leq q < p^*$ where $p^*$ is the Sobolev conjugate of $p$.

I am currently failing to see how this does not contradict the fact that a linear space is compact if and only if it is finite dimensional. In particular the argument I have in mind is that, if $\overline{W^{1,p}(U)}$ is compact, then so is the unit ball in $W^{1,p}(U)$, being a closed subset of a compact set. But, $W^{1,p}(U)$ is clearly not finite dimensional.

Where does the above argument go wrong? Thanks!

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger