by RAHUl JHa
Last Updated January 19, 2018 08:19 AM

I have the following cumulative distribution function:

$F(x)=\begin{cases} 0& \text{ if } x<0 \\ \frac{1}{4}+\frac{1}{6}(4x-x^2) & \text{ if } 0\leq x\leq1\\ 1& \text{ if } x\geq1 \end{cases} $

Now, it is required to calculate the probability $P(X=0|0\leqX\<1)$. How can I obtain the probability at a single point when the function given is a continuous function in the given range $0\leqX\<1$?

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger